Fyzikální veličiny
Parobrzdné a neprodyšné izolační pásoviny
27. 10. 2015
Cesty vlhkosti
Tepelné izolace musí být chráněny před vlhkostní zátěží z teplého interiérového vzduchu. Tuto úlohu splňují parobrzdné a neprodyšné izolační pásoviny.
DIFÚZE
K difúzi dochází díky rozdílu tlaku mezi vnitřkem a venkem. Přitom nedochází k této výměně přes spáry, nýbrž monolitickou, neprodyšnou vrstvu materiálu. Difúze směřuje v zimě zpravidla zevnitř ven a v létě z venku dovnitř. Transport vlhkosti do konstrukce je závislý na difúzním odporu materiálu (hodnota sd). Období teplých venkovních podmínek je ve střední Evropě delší než období se zimními teplotami, tak že z konstrukce může vyschnout více vlhkosti.
Difúze probíhá dle plánu
UPOZORNĚNÍ |
parobrzda s hodnotou sd 2,3 m umožní dle DIN 4108-3 denně proniknout do konstrukce ca. 5 g vlhkosti na čtvereční metr. |
BOČNÍ DIFÚZE
Vlhkost proniká do tepelné izolace z boku stavebního dílu. Bok stavebního dílu bývá zpravidla vzduchotěsný, vykazuje ale nižší hodnotu sd než parobrzda. Příklad: svázaná, neprodyšně omítnutá zděná stěna. Je-li vnější nedifúzní konstrukce opatřena zevnitř parobrzdou, která neumožňuje buď vůbec žádné, nebo jen malé zpětné vysychání, hrozí zvlhnutí izolace a s tím i stavební škody i při neprodyšné konstrukci s těsným provedením.
Nepředvídané: vlhkost proniká z boku
VLHKÉ STAVEBNÍ HMOTY
Spolu se stavebními hmotami vneseme do konstrukce často mnoho vody. Příklad ukazuje o jakémnožství se může jednat. U dřevěné střechy s krokvemi 6/22, e= 70 cm a váze dřeva 500 kg na metr krychlový, připadne na jeden běžný metr krokve ca. 10 kg dřeva. Při vysychání dřeva o pouze 1 % se při tom uvolní 100 g vody na metr krychlový, u 10 % je to 1000 g, u 20 % 2000g vody, které vysychají z dřevěné konstrukce a mohou se dostat do jiných částí konstrukce.
Nepředvídané: vlhkost ze stavebních materiálů
KONVEKCE
Pohybuje-li se vzduch formou proudění, hovoříme o konvekci. K té může docházet v tepelně-izolační konstrukci, když jsou v parobrzdě spáry. Mezi klimatem interiéru a exteriéru existuje tlakový spád podmíněný teplotním rozdílem, který se vyrovnává prouděním vzduchu. Konvekcí je možné v jednom jediném dni vnést do tepelné izolace několik set gramů vlhkosti, která zde zkondenzuje.
Nepředvídané: proudění vzduchu (konvekce)
Příklad
Bezspárovou izolační konstrukcí s parobrzdou o hodnotě sd 30 m difúzuje během jednoho normového zimního dne 0,5 g vody na metr čtvereční konstrukce. Během stejné doby pronikne konvekcí do konstrukce spárou v parobrzdě o šířce 1 mm 800 g vlhkosti. To odpovídá zhoršení o faktor 1600. Stavební škody plísněmi hrozí například když v zimě proniká teplý, vlhký interiérový vzduch spárami v parobrzdné a neprodyšné izolační vrstvě do tepelně izolační konstrukce, a v ní se zkondenzuje velké množství vody. Řada plísní produkuje jako druhotné produkty látkové výměny jedovaté látky, mimo jiné MVOC (těkavé organické sloučeniny) a spóry, které ohrožují lidské zdraví. Považují se za původce alergií číslo jedna. Člověk by se měl bezpodmínečně vyvarovat kontaktu s plísněmi. Přitom není podstatné, zda-li se MVOC nebo spóry dostanou do těla přes jídlo, čili žaludek, nebo vzduchem do plic.
800g kondenzátu spárou o šířce 1mm
Plísně vzniklé ze zkondenzované vody
- Vlhkost může proniknout do konstrukce nejrůznějším způsobem. Vlhkostní zatížení nelze zcela vyloučit.
- Je-li vlhkostní zatížení příliš vysoké, vznikají stavební škody.
- Parobrzdy jsou bezpečnější než parozábrany. Parozábrany s vysokým difúzním odporem téměř neumožňují žádné zpětné vysychání vlhkosti ze stavebního dílu do interiéru a vytváří tak vlhkostní pasti.
- Rozhodující pro stavební bezškodnost konstrukce je: vysoká rezerva vysychání.
NEJLEPŠÍ BEZPEČNOST
Parobrzdné pásoviny s vlhkostně variabilním difúzním odporem. V zimě jsou difúzně nepropustnější a chrání optimálně tepelnou izolaci před vnikáním vlhkosti. V létě dokáží svůj difúzní odpor velmi snížit a zaručují tak nejlepší možné podmínky pro zpětné vysychání.
Nejlepší prostředek: inteligentní pásovina
Zdroj článku a obrázků: Ciur a.s., systémy pro úsporu energií
-
14. 11. 2024Seminář - Nové možnosti venkovního opláštění s Corian® Exteriors › více zde
-
7.11. - 9.11.Veletrh Stavotech - Moderní dům Olomouc › více zde
-
8.11 - 10.11.Vyhrajte skvělé ceny na Dnech pasivních domů › více zde
-
8.11 - 10.11.Dny pasivních domů 2024 - Zeptejte se majitelů, jak se jim v domě žije. › více zde
-
25. 10. 2024Webinář - Energeticky vychytaná novostavba i rekonstrukce včetně čerpání dotace › více zde
- Zateplení střechy
- Ekologie a energetika
- Zateplování fasády
- Zateplování dřevostaveb
- Názvosloví tepelných izolací
- Izolace a zateplení sklepa
- Pasivní domy
- Stavba - odhlučnění, odvlhčení, reakce na oheň
- Součinitel prostupu tepla
- Tepelné mosty a plísně v domu
- Paropropustnost a difúze
- Třídy reakce na oheň u materiálů
- Objemová hmotnost
- Kondenzace vodní páry
- Tech. postup zateplení fasády
- Návody a typy k zateplení
- Spádování ploché střechy
- Nové hodnoty součinitele prostupu tepla pro budovy(2011)
- Tepelný odpor - výpočty
Skelná vata: Dekwool, Isover, Knauf, Ursa, Ursa PureOne
Minerální vata: Baumit, Isover, Knauf Nobasil, Rockwool
Dřevovláknité desky: Pavatex, Steico, Inthermo, Agepan
Dřevocementové desky: Knauf-Heraklith, DCD Ideal, Velox
EPS - expandovaný polystyren: Baumit, Enroll, Isover, Styrotrade
XPS - extrudovaný polystyren: Austrotherm, Dow Chemical, Isover, Synthos, Ursa
PUR - pěnový polyuretan: Eurothane, ITP, Jitrans Trade, PUR Izolace
PIR izolace: Dekpir, Kingspan, Powerline, PUR Izolace, Pama, Satjam
PE - pěnový polyetylén: Ekoflex, Mirel Trading, Fadopex, Fastrade
Pěnové sklo: Foamglas, Ecotechnics, Recifa
Minerální granuláty: Lias
Materiály na bázi kamenné vlny: Machstav, Knauf, Isover
Materiály na bázi papíru a celulózy: Enroll, CIUR, Dektrade
Sendvičové desky a systémy: Kingspan, Marcegaglia, P-Systems, Ruukki
Ovčí vlna: Naturwool, Isolena, Jiří Faltys
Konopí: Insowool, Canabest, Izolace konopí CZ
Ostatní: Džínovina, OSB desky